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ABSTRACT: Our aim of this paper is to obtain a fixed point theorem involving weakly compatible maps in
the setting of metric space satisfying a rational contractive condition. Our result complement, extend and
unify several well known comparable results.
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I. INTRODUCTION

The study of fixed point theorems and common fixed point theorems satisfying contractive type conditions has
been a very active field of research activity during the last decades. In 1922, the polish mathematician Banach [1]
proved a theorem which ensures under approximation conditions the existence and uniqueness of the fixed point.
His result is called Banach fixed point theorem or the Banach contraction principle. This theorem provides a
technique for solving the various type of applied problems in mathematical sciences and engineering. Banach
published first contractive definition for the fixed point theorem by using the concept of Lipschitz mapping which
is known as Banach’s contraction Principle [1]. Final conclusion of this result is that T has a unique fixed point,
which can be reached from any starting value x ∈ X . which is stated as:
If T is a mapping of a complete metric space (X, d) into itself satisfying:d(Tx, Ty) ≤ α d(x, y) ….(1)

For all x, y ∈ X and for some α such that 0 ≤ α < 1 then it gives a unique fixed point. It should be noted that the
result given by Banach is provided fixed point if T is continuous mapping. This result was generalized in different
ways by many researchers. In 1968 one of most popular result was given by Kannan [16]. In this paper he gaves a
new idea for the contractive type mapping which is very useful in the study of fixed point theory  also he omit the
assumption for the continuity of T.  His states as follows:

There exists a number k where 0 < α < such that for each x, y ∈ Xd(Tx, Ty) ≤ α [d(x, Tx) + d(y, Ty)] …(2)

In 1972 a new geometrically concept which is different from Banach [1] and Kannan [16] for contraction type
mapping was introduced by Chatterjee [3] which gives a new direction to  the study of the fixed point theory.
Chatarjee [3]  gives following contraction principle:
There exists a number α where 0 < α < 1 such that for each x, y ∈ Xd(Tx, Ty) ≤ α [ d(x, Ty) + d(y, Tx)] …(3)

In 1978, Fisher B. [9] generalized the result of Kannan by choosing α which as follows:d(Tx, Ty) ≤ α [d(x, Ty) + d(Tx, y)] …(4)

For all x, y ∈ X and 0 ≤ α ≤ then T has unique fixed point in X.
On things is common in all above generalizations that is all researchers introduced in similar expression. Beside
this in 1977 Jaggi  [12] introduced  the  rational  expression  first  time which is  as follows:d(Tx, Ty) ≤ α ( , ) ( , )( , ) + β d(x, y) …(5)
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For all x, y ∈ X, x ≠ y, 0 ≤ α + β ≤ 1 then T has unique fixed point in X.
One thing should be noted that in the above result by Jaggi [12] is this result is  not valid for x = y. Further in
1980 Jaggi and Das [13] obtained fixed point theorem with the mapping satisfying:d(Tx, Ty) ≤ α ( , ) ( , )( , ) ( , ) ( , ) + β d(x, y) …(6)

For all x, y ∈ X, x ≠ y, 0 ≤ α + β ≤ 1 then T has unique fixed point in X. Above this results is also valid forx = y.
A number of these results dealt with fixed points for more than one map. In some cases commutatively between
the maps was required in order to obtain a common fixed point. First of all Jungck [14] introdicued the notion of
commutative mapping which is also known as commuting mapping and fixed common fixed point result for two
different self mappings. Sessa [19] coined the term weakly commuting. Jungck [14] generalized the notion of
weak commutativity by introducing the concept of compatible maps and then weakly compatible maps. There are
examples that show that each of these generalizations of commutativity is a proper extension of the previous
definition. Also, during this time a number of researchers established fixed point theorems for pair of maps.
Our aim of this paper is to obtain a fixed point theorem involving weakly compatible maps in the setting of metric
space satisfying a rational contractive condition. Our result complement, extend and unify several well known
comparable results.
First we recall some known definitions and results which are helpful for proving our results.

Definition 1.1.1. Let S and T are self maps of a metric space X.  If w = Sx = Tx for some x ∈ X, then x is called a
coincidence point of S and T, and w is called a point of coincidence of S and T.

Definition 1.1.2. Let S and T are self maps of a metric space X, then S and T are said to be weakly compatible iflim → ∞ d(STx , TSx ) = 0
Whenever {x } is sequence in X such thatlim → ∞ Sx = lim → ∞ Tx = x
for some x ∈ X.
Definition 1.1.3. Let S and T are self maps of a metric space X, then S and T are said to be weakly compatible if
they commute at their coincidence points; i.e. if Tx = Sx for some x ∈ X then TSx = STx.

II. COMMON FIXED POINT THEOREMS FOR SELF MAPPINGS IN METRIC SPACES

We prove a common fixed point result for four self mappings satisfying symmetric rational expression. Our aim
of this section is to generalized and extended previous many known results.

Theorem 2.1.1. Let A, B, S, T be continuous self mappings defined on the complete metric space X   into itself
satisfies the following conditions:2.1.1(i) A (X) ⊆ T(X) , B(X) ⊆ S(X)2.1.1(ii) if one of A(X), B(X) , S, (X), T(X) is  complete  subspace  of  X.2.1.1(iii) The    pair {A, S} and {B, T} are weakly compatible.2.1.1(iv) d(Ax, By) ≤ α

( , ) ( , ) ( , )( , ) ( , ) ( , ) +
β

( , ) ( , ) ( , )
β ( , ) ( , ) ( , )+ η min[d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx)]

For all x, y ∈ X , (x ≠ y) and for non negative α, β, ∈ [0,1), ηia any real such that 0 < 2α + 3β < 1.Then A, B, S, T have unique common fixed point in X.

Proof. For   any   arbitrary x in X we define the sequence {x } and {y } in X such thatAx = Tx = y and Bx = Sx = y (2.1.1 a)
for all n=  0, 1, 2, …..

On taking y ≠ yd (y , y ) = d (Ax , Bx )
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From 2.1.1(iv) we haved(Ax , Bx ) ≤ α
( , ) ( , ) ( , )( , ) ( , ) ( , )

+ β ( , ) ( , ) ( , )( , ) ( , ) ( , )+ η min d(Ax , Sx )d(Bx , Tx ), d(Ax , Tx )d(Bx , Sx )d(y , y ) ≤ α
( , ) ( , ) ( , )( , ) ( , ) ( , )

+ β
( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )

+ η min d(y , y )d(y , y ), d(y , y )d(y , y )(1 − α − 2β)d(y , y ) ≤ (α + β) d(y , y )d(y , y ) ≤ (α + β)(1 − α − 2β) d(y , y )
Let us denote

(α β)( α β) = s,

since 0 < 2α + 3β < 1 which gives0 < (α β)( α β) = s < 1 and that d(y , y ) ≤ s d(y , y )
Similarly we can show that d(y , y ) ≤ s d(y , y )
Processing the same way we can write,d(y , y ) ≤ s d(y , y )
for any integer  m  we have d(y , y ) ≤ d(y , y ) + d(y , y ) +… … … … … + d(y , y )d(y , y ) ≤ s . d(y , y ) + s . d(y , y ) +… … … … + s . d(y , y )d(y , y ) ≤ s [1 + s + s + … … … + s ]. d(y , y )d(y , y ) ≤ . d(y , y )
as n → ∞ gives  that d(y , y ) → 0
Thus {y } is a Cauchy sequence in X. Since T(X) is complete subspace of X then the subsequence y =Tx is Cauchy sequence in T(X) which converges to the some point say u in X. Let v ∈ T u then Tv = u.
Since {y } is converges to u and hence {y } also converges to same point u .
we set x = x and y = v in 2.1.1(iv)

d(Ax , Bv) ≤ α
( , ) ( , ) ( , )( , ) ( , ) ( , )+ β ( , ) ( , ) ( , )( , ) ( , ) ( , )+ η min d(Ax , Sx )d(Bv, Tv), d(Ax , Tv)d(Bv, Sx )as n → ∞ d(u, Bv) ≤ (α + 2β ) d(u, Bv)
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which contradiction Implies that Bv = u also B(X) ⊂ S(X) so Bv = u implies  that u ∈ S(X) .
Let w ∈ S (X) then w = u setting x = w and y = x in 2.1.1(iv) we getd(Aw, Bx ) ≤ α ( , ) ( , ) ( , )( , ) ( , ) ( , )+ β ( , ) ( , ) ( , )( , ) ( , ) ( , )+ η min d(Aw, Sw)d(Bx , Tx ), d(Aw, Tx )d(Bx , Sw)as n → ∞ d(Aw, u) ≤ ( + ) d(Aw, u)
Which contradiction implies that, Aw = u this  means Aw = Sw = Bv = Tv = u.
since Bv = Tv = u so  by  weak  compatibility  of (B, T) it  follows  that, BTv = TBv and so we  getBu = BTv = TBv = Tu .
Since Aw = Sw = u so by weak compatibility of (A, S) it follows that SAw = ASw and So we getAu = ASw = SAw = Su .
Thus from 2.1.1(iv) we have d(Aw, Bu) ≤ α ( , ) ( , ) ( , )( , ) ( , ) ( , )+ β ( , ) ( , ) ( , )( , ) ( , ) ( , )+ η min d(Aw, Sw)d(Bu, Tu), d(Aw, Tu)d(Bu, Sw)d(u, Bu) ≤ (α + 2β )d(u, Bu)
which is  contradiction implies  that Bu = u.
Similarly we can show Au = u by using 2 .1.1(iv). Thereforeu = Au = Bu = Su = Tu.
Hence the point u is common fixed   point   of A, B, S, T.
If we assume that S(X) is complete then the argument analogue to the previous completeness argument proves the
theorem. If A(X) is complete then u ∈ A(X) ⊂ T(X). similarly if B(X) is complete then u ∈ B(X) ⊂ S(X). This
complete prove of the theorem.
Uniqueness. Let us assume that z is another fixed point of A, B, S, T in X different from u. i. e. u ≠ z thend(u, z) = d(Au, Bz)from 2.1.1(iv) we getd(Ax, Bz) ≤ α

( , ) ( , ) ( , )( , ) ( , ) ( , ) +
β ( , ) ( , ) ( , )

β ( , ) ( , ) ( , )+ η min[d(Au, Su)d(Bz, Tz), d(Au, Tz)d(Bz, Su)]d(u, z) ≤ (α + 2β )d(u, z)
which is a contradiction  of the hypothesis.
Hence u is unique common fixed point of A, B, S, T in X.
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